межгосударственный стандарт

ЧУГУН ЛЕГИРОВАННЫЙ

Методы определения марганца

Alloy cast iron. Methods for determination of manganese

ГОСТ 2604.5—84 Взамен ГОСТ 2604.5—77

МКС 77.080.10 ОКСТУ 0809

Постановлением Государственного комитета СССР по стандартам от 27 января 1984 г. № 357 дата введения установлена

01.01.85

Ограничение срока действия снято по протоколу № 4—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 4—93)

Настоящий стандарт устанавливает фотометрический метод определения марганца (при массовой доле от 0,10 до 2,0 %), титриметрический метод (при массовой доле от 0,20 до 5,0 %), потенциометрический метод (при массовой доле от 2,0 до 25,0 %) и атомно-абсорбционный метод (при массовой доле от 2,0 до 2,0 %) в легированном чугуне.

Стандарт соответствует международному стандарту ИСО 629—82 в части фотометрического метода.

(Измененная редакция, Изм. № 1).

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 28473—90.
- 1.2. Погрешность результата анализа (при доверительной вероятности 0,95) не должна превышать Δ , приведенного в табл. 2, при выполнении следующих условий:

расхождение результатов двух (трех) параллельных измерений не должно превышать (при доверительной вероятности 0.95) значения $d_2(d_3)$, приведенного в табл. 2;

воспроизведенное в стандартном образце значение массовой доли элемента не должно отличаться от аттестованного более чем на допускаемое (при доверительной вероятности 0,85) значение δ , приведенное в табл. 2.

При невыполнении одного из вышеуказанных условий проводят повторные измерения массовой доли марганца. Если и при повторных измерениях требования к точности результатов не выполняются, результаты анализа признают неверными, измерения прекращают до выявления и устранения причин, вызвавших нарушение нормального хода анализа.

Расхождение двух средних результатов анализа, выполненного в различных условиях (например, при внутрилабораторном контроле воспроизводимости), не должно превышать (при доверительной вероятности 0,95) значения d_{κ} , приведенного в табл. 2.

(Введен дополнительно, Изм. № 1).

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на реакции окисления двухвалентного марганца до семивалентного йоднокислым калием в сернокислой или азотнокислой среде и измерении оптической плотности окрашенного комплекса при длине волны 545 нм.

Издание официальное

Перепечатка воспрещена

*

Влияние железа устраняют прибавлением фосфорной кислоты.

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Кислота соляная по ГОСТ 3118—77.

Кислота азотная по ГОСТ 4461—77 и разбавленная 1:1, 1:100.

Кислота серная по ГОСТ 4204—77 и разбавленная 1:4.

Кислота ортофосфорная по ГОСТ 6552—80.

Смесь кислот: к 750 см^3 воды осторожно при непрерывном перемешивании приливают 150 см^3 серной кислоты, охлаждают, приливают 100 см^3 ортофосфорной кислоты, перемешивают и охлаждают.

Калий йоднокислый, раствор 50 г/дм 3 : 50 г йоднокислого калия растворяют в 800 см 3 азотной кислоты (1:1), раствор охлаждают, доливают водой до 1 дм 3 и перемешивают.

Калий марганцовокислый по ГОСТ 20490—75.

Водорода перекись по ГОСТ 10929-76, раствор 0.3 г/см^3 .

Железо карбонильное ос. ч.

Натрий азотистокислый по ГОСТ 4197—74, раствор 1 г/см³.

Стандартные растворы сернокислого марганца:

раствор А с массовой концентрацией 0,0002 г/см³: 0,5754 г марганцовокислого калия перекристаллизованного и высушенного на воздухе помещают в стакан вместимостью 250 см³, прибавляют 20 см³ серной кислоты (1:4) и осторожно, по каплям, при перемешивании добавляют перекись водорода или соляную кислоту до обесцвечивания раствора. Раствор выпаривают до начала кристаллизации. Соли растворяют при нагревании в 20—30 см³ воды, охлаждают, переносят в мерную колбу вместимостью 1 дм³, доливают водой до метки и перемешивают.

раствор Б с массовой концентрацией 0,0001 г/см³: 100 см³ стандартного раствора А помещают в мерную колбу вместимостью 200 см³, доливают до метки водой и перемешивают.

Вода, не содержащая восстановителей: в колбу вместимостью 2 дм³ наливают 1 дм³ воды, добавляют по каплям серную кислоту до рН 3 по универсальной индикаторной бумаге, нагревают до кипения, прибавляют несколько кристаллов йоднокислого калия, кипятят 5—7 мин и охлаждают.

Вода, не содержащая восстановителей, применяется для разбавления окисленных растворов, приготовленных для фотометрирования.

2.1, 2.2. (Измененная редакция, Изм. № 1).

- 2.3. Проведение анализа
- 2.3.1. Навеску чугуна в зависимости от массовой доли марганца (см. табл. 1) помещают в стакан вместимостью 250 см^3 , приливают 30 см^3 смеси серной и ортофосфорной кислоты, стакан накрывают часовым стеклом и нагревают 5-10 мин.

 Затем осторожно приливают

Затем осторожно приливают 10 см³ азотной кислоты и нагревают до полного растворения навески.

Нерастворимые в этих условиях чугуны растворяют в соляной кислоте или в соляной кислоте с добавлением азотной кислоты. Затем к раствору при-

 Массовая доля марганца, %
 Масса навески чугуна, г
 Аликвотная часть раствора, см³

 От 0,10 до 0,50 Св. 0,50 » 2,0
 1
 50

 Св. 0,50 » 2,0
 0,5
 25

ливают $30 \, \text{cm}^3$ смеси серной или ортофосфорной кислот, выпаривают его до появления паров серной кислоты и охлаждают. Обмывают стенки стакана водой и снова выпаривают раствор до появления паров серной кислоты.

Содержимое стакана охлаждают, растворяют соли при нагревании в 50—60 см³ воды и отфильтровывают осадок кремниевой кислоты и графита на фильтр «белая лента», собирая фильтрат и промывную жидкость в мерную колбу вместимостью 250 см³. Стакан и осадок на фильтре промывают три—пять раз азотной кислотой (1:100). Фильтр с осадком отбрасывают. Содержимое колбы охлаждают, доливают до метки водой и перемешивают. Аликвотную часть (см. табл. 1) раствора помещают в коническую колбу вместимостью 250 см³, приливают воду приблизительно до 50 см³, 25 см³ смеси серной и ортофосфорной кислот и 10 см³ раствора йоднокислого калия.

(Измененная редакция, Изм. № 1).

2.3.2. Содержимое колбы нагревают до кипения, кипятят 1 мин и выдерживают при температуре, близкой к температуре кипения, в течение 40-50 мин. Затем раствор охлаждают, переносят в мерную колбу вместимостью $100 \, \text{см}^3$, доливают водой, не содержащей восстановителей, до метки и перемешивают.

C. 3 FOCT 2604.5—84

Оптическую плотность раствора измеряют на спектрофотометре при длине волны 545 нм или на фотоэлектроколориметре со светофильтром, имеющим область пропускания в интервале длин волн 530—550 нм, в кювете с толщиной поглощающего свет слоя 20 мм.

В качестве раствора сравнения используют полученный раствор, добавив к нему несколько капель раствора азотистокислого натрия для восстановления марганцовой кислоты (до исчезновения розовой окраски).

Для внесения поправки в результаты анализа на содержание марганца в реактивах через все стадии анализа проводят контрольный опыт, оптическую плотность раствора которого измеряют относительно своего раствора сравнения, который получают аналогично выше приведенному.

По найденному значению оптической плотности исследуемого раствора с учетом оптической плотности раствора контрольного опыта находят количество марганца в миллиграммах по градуировочному графику.

2.3.3. Построение градуировочного графика

Навеску карбонильного железа массой 2 г помещают в стакан вместимостью 250 см³, приливают 50 см³ смеси серной и ортофосфорной кислот и растворяют при нагревании. Раствор окисляют, прибавляя по каплям азотную кислоту, кипятят до удаления окислов азота и охлаждают. Раствор переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

По 10 см^3 полученного раствора помещают в восемь конических колб вместимостью 250 см^3 , в семь колб добавляют последовательно 1; 2; 4; 6; 8; $10 \text{ и } 12 \text{ см}^3$ стандартного раствора Б, что соответствует 0,1; 0,2; 0,4; 0,6; 0,8; 1,0 и 1,2 мг марганца. В восьмой колбе проводят контрольный опыт на содержание марганца в реактивах.

Раствор в каждой колбе разбавляют водой до 50 см³, прибавляют по 25 см³ смеси серной и ортофосфорной кислот и по 10 см³ раствора йоднокислого калия. Далее анализ проводят по п. 2.3.2.

В качестве раствора сравнения используют раствор контрольного опыта.

По найденным величинам оптической плотности и соответствующим им значениям концентраций марганца строят градуировочный график.

(Измененная редакция, Изм. № 1).

- 2.4. Обработка результатов
- 2.4.1. Массовую долю марганца (X) в процентах вычисляют по формуле

$$X=\frac{m_1\cdot 100}{m},$$

где m — масса навески чугуна, соответствующая фотометрируемой аликвотной части раствора, мг;

 m_1 — масса марганца, найденная по градуировочному графику, мг.

(Измененная редакция, Изм. № 1).

2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности 0,95 не должны превышать указанных в табл. 2.

3. ТИТРИМЕТРИЧЕСКИЙ МЕТОД ДЛЯ ЧУГУНА С МАССОВОЙ ДОЛЕЙ КОБАЛЬТА ДО 1,0 %

3.1. Определение марганца в чугунах, содержащих до 1,0 % хрома

3.1.1. Сущность метода

Метод основан на окислении двухвалентного марганца в кислой среде до семивалентного надсернокислым аммонием в присутствии катализатора азотнокислого серебра. Полученную марганцовую кислоту оттитровывают раствором арсенит-нитрита натрия.

3.1.2. Реактивы и растворы

Кислота азотная по ГОСТ 4461—77.

Кислота серная по ГОСТ 4204—77 и разбавленная 1:4.

Кислота ортофосфорная по ГОСТ 6552—80.

Смесь кислот: к 550 см^3 воды осторожно, при непрерывном перемешивании, приливают 90 см^3 серной кислоты, охлаждают, приливают 100 см^3 ортофосфорной кислоты, перемешивают и переливают 260 см^3 азотной кислоты.

Серебро азотнокислое по ГОСТ 1277—75, раствор 0,005, г/см³.

Натрий хлористый по ГОСТ 4233—77, раствор 0.005 г/см^3 .

Бумага индикаторная, универсальная.

Аммоний надсернокислый по ГОСТ 20478—75, раствор 0,2 г/см³.

Мышьяковистый ангидрид по ГОСТ 1973—77.

Натрий мышьяковистокислый орто (арсенит натрия).

Натрий двууглекислый по ГОСТ 4201—79.

Натрия гидроокись по ГОСТ 4328— 77, раствор $0.15 \, \text{г/см}^3$.

Натрий азотистокислый по ГОСТ 4197—74.

Натрия арсенит-нитрит, стандартный раствор: 1,5 г мышьяковистого ангидрида помещают в стакан вместимостью 400—600 см³, содержащий 25 см³ горячего раствора гидроокиси натрия, растворяют при умеренном нагревании, разбавляют водой до 120—130 см³, охлаждают. Затем к раствору приливают серную кислоту (1:4) до рН 7 по универсальному индикатору и 2—3 см³ в избыток. Добавляют двууглекислый натрий до рН 7 по универсальной индикаторной бумаге.

В полученном растворе растворяют 0,85 г азотистокислого натрия, раствор переносят в мерную колбу вместимостью 1 дм³, разбавляют водой до метки и перемешивают.

Допускается приготовление стандартного раствора из арсенита натрия: 2,91 г арсенита натрия помещают в стакан вместимостью 400 см³, приливают 120—150 см³ воды и перемешивают до полного растворения соли.

Далее подготовку раствора проводят так же, как из мышьяковистого ангидрида. При содержании в соли кристаллизационной воды ее учитывают при вычислении навески, необходимой для приготовления стандартного раствора.

Массовую концентрацию раствора арсенит-нитрита натрия устанавливают по стандартным образцам чугуна с химическим составом, соответствующим требованиям настоящего стандарта, и вычисляют по формуле

$$T = \frac{m \cdot C_m}{V \cdot 100},$$

где m — масса навески стандартного образца, г;

 C_{m} — массовая доля марганца в стандартном образце, %; V — объем раствора арсенит-нитрита натрия, израсходованный на титрование, см³.

3.1.3. Проведение анализа

Навеску чугуна массой 0,5 г (при массовой доле марганца от 0,20 до 0,8 %) или массой 0,25 г (при массовой доле марганца от 0,8 до 5,0 %) помещают в коническую колбу вместимостью 250 см³, приливают 30—40 см³ смеси кислот и растворяют при нагревании. Раствор кипятят до удаления окислов азота.

Нерастворимый остаток, содержащий кремниевую кислоту и графит, отфильтровывают на фильтр средней плотности «белая лента» и промывают 5—6 раз горячей водой, собирая фильтрат и промывные воды в коническую колбу вместимостью 250 см³.

Раствор разбавляют водой до 100 см³, прибавляют 10 см³ раствора азотнокислого серебра, 20 см³ раствора надсернокислого аммония, нагревают до кипения и кипятят 1 мин, выдерживают на теплой плите до прекращения выделения пузырьков кислорода.

Затем раствор охлаждают до комнатной температуры, приливают 10 см³ раствора хлористого натрия и быстро титруют раствором арсенит-нитрита натрия до исчезновения малиновой окраски.

- 3.1.2, 3.1.3. (Измененная редакция, Изм. № 1).
- 3.1.4. Обработка результатов
- 3.1.4.1. Массовую долю марганца (Х) в процентах вычисляют по формуле

$$X = \frac{V \cdot T \cdot 100}{m},$$

где V — объем раствора арсенит-нитрита натрия, израсходованный на титрование, см 3 ;

T — массовая концентрация раствора арсенит-нитрита натрия по марганцу, г/см³;

m — масса навески чугуна, г.

(Измененная редакция, Изм. № 1).

3.1.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности 0,95 не должны превышать указанных в табл. 2.

C. 5 FOCT 2604.5—84

3.2. Определение марганца в чугунах, содержащих свыше 1,0 % хрома

3.2.1. Сущность метода

Сущность метода по п. 3.1.1 с дополнением: мешающие определению марганца элементы осаждают окисью цинка.

3.2.2. Реактивы и растворы

Кислота соляная по ГОСТ 3118—77.

Аммиак водный по ГОСТ 3760—79.

Окись цинка по ГОСТ 10262—73, суспензия в воде: 50 г окиси цинка, не содержащей марганца, карбонатов и восстановителей, помещают в фарфоровую ступку и тщательно растирают пестиком с горячей водой, затем добавляют 250—300 см³ горячей воды и перемешивают.

Окись цинка, содержащую карбонаты и восстановители, предварительно прокаливают при $800\,^{\circ}\mathrm{C}.$

Остальные реактивы и растворы по п. 3.1.2.

3.2.3. Проведение анализа

Навеску чугуна массой 1 г (при массовой доле марганца от 0,20 до 0,8 %) или массой 0,5 г (при массовой доле марганца от 0,8 до 5,0 %) помещают в коническую колбу вместимостью 250 см³, приливают 40-50 см³ серной кислоты (1:4) и растворяют при нагревании. Прибавляют по каплям азотную кислоту до прекращения вспенивания раствора и 2-3 см³ в избыток. Раствор выпаривают до появления паров серной кислоты, охлаждают. Стенки колбы обмывают водой, прибавляют около 50 см³ воды и растворяют соли при нагревании.

Если чугун не растворяется в смеси серной и азотной кислот, навеску растворяют в 30 см³ смеси соляной и азотной кислот в соотношении 3:1 при нагревании, охлаждают. Приливают 10 см³ серной кислоты, выпаривают раствор до появления паров серной кислоты и снова охлаждают. Стенки стакана обмывают водой, раствор выпаривают до появления паров серной кислоты, охлаждают, прибавляют около 50 см³ воды и растворяют соли при нагревании.

Раствор, полученный любым из этих способов, переносят в мерную колбу вместимостью 250 см³ и прибавляют раствор аммиака до появления красно-бурой окраски. В случае появления осадка гидроокисей добавляют по каплям серную кислоту (1:4) до растворения осадка.

К раствору прибавляют небольшими порциями суспензию окиси цинка до полной коагуляции осадка гидроокисей (на дне колбы должен быть небольшой избыток суспензии окиси цинка).

Содержимое колбы охлаждают, доливают водой до метки, перемешивают и дают осадку отстояться.

Раствор фильтруют через сухой фильтр средней плотности «белая лента» в сухую мерную колбу вместимостью $100~{\rm cm}^3$, отбрасывая первые порции фильтрата. Наполнив колбу до метки, раствор переносят в коническую колбу вместимостью $250~{\rm cm}^3$, прибавляют $40~{\rm cm}^3$ смеси кислот и заканчивают определение по п. 3.1.3.

3.2.2, 3.2.3. (Измененная редакция, Изм. № 1).

3.2.4. Обработка результатов — по п. 3.1.4.

4. ПОТЕНЦИОМЕТРИЧЕСКИЙ МЕТОД ДЛЯ ЧУГУНА С МАССОВОЙ ДОЛЕЙ ВАНАДИЯ ДО 0,10 %

4.1. Сущность метода

Метод основан на окислении двухвалентного марганца до трехвалентного марганцовокислым калием в нейтральной среде. Железо, хром и другие элементы, мешающие определению марганца, связывают в пирофосфатные комплексы.

4.2. Аппаратура, реактивы и растворы

Установка для потенциометрического титрования с парой электродов: платина — насыщенный каломельный; платина — вольфрамовый или платина — платиновый.

Кислота соляная, по ГОСТ 3118—77, разбавленная 1:1.

Кислота азотная по ГОСТ 4461—77.

Кислота серная по ГОСТ 4204—77, разбавленная 1:20.

Натрий фосфорнокислый пиро по ГОСТ 342—77, раствор 120 г/дм³.

Аммиак водный по ГОСТ 3760—79, разбавленный 1:1.

Мочевина по ГОСТ 6691-77, раствор $50 \, г/дм^3$.

Бумага индикаторная, универсальная.

Натрий щавелевокислый по ГОСТ 5839-77, перекристаллизованный и высушенный при 105-110 °C до постоянной массы.

Калий марганцовокислый по ГОСТ 20490—75, стандартный раствор с молярной концентрацией эквивалента, равной 0.05 моль/дм³: 1.58 г перекристаллизованного и высушенного при 120 °C марганцовокислого калия растворяют в 1 дм³ воды. Раствор оставляют стоять на 6 сут в закрытой склянке, затем его сифонируют в склянку из темного стекла.

Массовую концентрацию стандартного раствора марганцовокислого калия устанавливают по щавелевокислому натрию.

В коническую колбу вместимостью 500 см^3 помещают 200 см^3 серной кислоты (1:20), нагревают до 70-75 °C и прибавляют по каплям раствор марганцовокислого калия до устойчивой розовой окраски.

К содержимому колбы прибавляют 0,1 г щавелевокислого натрия и после растворения навески титруют при перемешивании раствором марганцовокислого калия до устойчивой в течение 1 мин розовой окраски. К концу титрования температура раствора должна быть не ниже 60 °C.

Массовую концентрацию раствора марганцовокислого калия (T), выраженную в граммах марганца, вычисляют по формуле

$$T=\frac{0.656\cdot m}{V},$$

где 0,656 — коэффициент пересчета массовой концентрации раствора марганцовокислого калия, установленного по щавелевокислому натрию, на массовую концентрацию, выраженную в граммах марганца;

m — масса навески щавелевокислого натрия, г;

V — объем раствора марганцовокислого калия, израсходованный на титрование, см³.

4.3. Проведение анализа

Навеску чугуна массой 1 г помещают в стакан вместимостью 250 см^3 и растворяют при слабом нагревании в $40-50 \text{ см}^3$ соляной кислоты (1:1), прибавляют по каплям азотную кислоту до прекращения вспенивания. Раствор кипятят до удаления окислов азота, выпаривают до $5-8 \text{ см}^3$, прибавляют 50 см^3 воды и растворяют соли при нагревании.

Нерастворимый остаток, содержащий кремниевую кислоту и графит, отфильтровывают через фильтр средней плотности «белая лента», промывают 5—6 раз горячей водой, собирая фильтрат и промывные воды в мерную колбу вместимостью 250 см³.

Фильтрат охлаждают, доливают до метки водой и перемешивают.

Аликвотную часть испытуемого раствора 50 см³ помещают в стакан вместимостью 400 см³, приливают 5 см³ раствора мочевины, 100 см³ раствора пирофосфорнокислого натрия и устанавливают рН среды около 7 по универсальной индикаторной бумаге, прибавляя, если необходимо, по каплям соляную кислоту (1:1) или раствор аммиака (1:1).

Подготовленный таким образом раствор титруют раствором марганцовокислого калия на потенциометрической установке до скачка потенциала.

(Измененная редакция, Изм. № 1).

4.4. Обработка результатов

4.4.1. Массовую долю марганца (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot T \cdot 100}{m},$$

где V— объем раствора марганцовокислого калия, израсходованный на титрование, см 3 ;

T — массовая концентрация раствора марганцовокислого калия по марганцу, г/см 3 ;

m — масса навески чугуна, г.

(Измененная редакция, Изм. № 1).

4.4.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности 0,95 не должны превышать указанных в табл. 2.

C. 7 FOCT 2604.5-84

5. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

- 5.1. Атомно-абсорбционный метод определения марганца по ГОСТ 12348—78 с дополнениями.
- 5.2. Абсолютные допускаемые расхождения результатов параллельных определений при доверительной вероятности 0,95 не должны превышать указанных в табл. 2.

Таблица 2

Массовая доля марганца, %	Нормы точности и нормативы контроля точности, %				
	Δ	$d_{_{\mathrm{K}}}$	d_2	d_3	δ
От 0,1 до 0,2 включ.	0,012	0,015	0,012	0,015	0,008
CB. 0,2 » 0,5 »	0,019	0,024	0,019	0,024	0,012
» 0,5 » 1,0 »	0,026	0,033	0,028	0,034	0,017
» 1,0 » 2,0 »	0,04	0,05	0,04	0,05	0,02
» 2,0 » 5,0 »	0,06	0,08	0,06	0,08	0,04
» 5,0 » 10 »	0,08	0,11	0,09	0,11	0,06
» 10	0,15	0,19	0,15	0,19	0,10

(Измененная редакция, Изм. № 1).