+7 (919) 316-56-90

ООО «Диагностика металлов»

Челябинск, ул. Постышева, 4/2

Время работы: Пн-Пт 8:00 до 16:00, Сб-Вс выходной

Алюминиевый деформируемый сплав 1201

Марка: 1201 Класс: Алюминиевый деформируемый сплав
Использование в промышленности: для изготовления сварных изделий, работающих работающих при температурах до -253 град.
Химический состав в % сплава 1201
Mn 0,2 - 0,4
V 0,05 - 0,15
Ti 0,02 - 0,1
Al 92,3 - 93,83
Cu 5,8 - 6,8
Zr 0,1 - 0,25
Свойства и полезная информация:
Свариваемость материала: без ограничений.
Механические свойства сплава 1201 при Т="20oС
Прокат Размер Напр. σв(МПа) sT(МПа) δ5(%) ψ% KCU(кДж / м2")
Лист     440 350 8    

Коррозионная стойкость сплава 1201:сплавы системы А1-Сu (Д20, 1201) находятся в фазовой области а+CuA12(θ) и в отличие от сплавов системы А1-Сu-Mg практически не подвергаются естественному старению.

Сопротивление коррозионному растрескиванию сплавов со структурой а+θ регулируется путем выбора оптимальных режимов искусственного старения. Кроме того, применение после закалки правки (холодная деформация 1,5-3%) также существенно повышает сопротивление межкристиллитной коррозии и коррозионному растрескиванию за счет эффекта ТМО. Этот эффект усиливается в случае увеличения степени холодной деформации до 4-6 %.

Положительное влияние деформации можно связать с изменением характера выделений при старении. Наименьшее сопротивление коррозионному растрескиванию соответствует структуре с плотным распределением частиц метастабильной θ"-фазы и наличием зон свободных от выделений. Преобразование этих выделений в выделения другой метастабильной θ`-фазы, которые, по-видимому, не срезаются дислокациями, обусловливает повышение сопротивления коррозионному растрескиванию.

Метастабильная θ`-фаза выделяется главным образом на дефектах кристаллической решетки, в том числе и на дислокациях. Поэтому деформация после закалки и последующее искусственное старение ускоряют зарождение этих частиц, которые закрепляют дислокации и, таким образом, способствуют получению структуры с высокой плотностью дислокаций и частиц θ`-фазы. В результате удается получать повышенные уровни значений механической прочности и сопротивления КР. Прочностные характеристики можно существенно повысить, применяя НТМО (табл. 47).

Схема и величина горячей деформации при производстве полуфабрикатов, в частности, плит, слабо влияют на их свойства. Наиболее высокое сопротивление КР имеют плиты, полученные по традиционной технологии- прокаткой плоского слитка.

Сплав 1201 относится к группе свариваемых сплавов и его можно применять в изделиях криогенной техники. Свойства сварных соединений в значительной степени оределяются режимами термической обработки. Старение на первой ступени ниже, а на второй выше критической температуры перехода θ"→θ` обеспечивает относительно высокий уровень сопротивления КР. Для сплава 1201 значение tк="210°С.

Сварные соединения в этом случае не разрушаются в течение 45 сут испытаний при напряжении 180 МПа. Однако следует иметь в виду, что независимо от условий старения в околошовной зоне и литой части шва наблюдается довольно значительная межкристаллитная коррозия.

Сплав Д20 отличается от сплава 1201 тем, что вместо циркония и ванадия содержит марганец. Особенностью этого сплава является то, что коррозионные свойства основного металла и сварных соединений зависят от концентрации марганца. При содержании в сплаве марганца порядка 0,6-0,7 % полуфабрикаты и их сварные соединения из сплава Д20 не только не уступают, а даже несколько превосходят полуфабрикаты из сплава 1201.

Краткие обозначения:

σв - временное сопротивление разрыву (предел прочности при растяжении), МПа   ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа   Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа   σизг - предел прочности при изгибе, МПа
δ5410 - относительное удлинение после разрыва, %   σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа   J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %   n - количество циклов нагружения
sв - предел кратковременной прочности, МПа   R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %   E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2   T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа   l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю   C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV - твердость по Виккерсу   pn и r - плотность кг/м3
HRCэ - твердость по Роквеллу, шкала С   а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В   σtТ - предел длительной прочности, МПа
HSD - твердость по Шору   G - модуль упругости при сдвиге кручением, ГПа

 

 

Обращаем ваше внимание на то, что данная информация о марке 1201, приведена в ознакомительных целях. Параметры, свойства и состав реального материала марки 1201 могут отличаться от значений, приведённых на данной странице. При обнаружении неточностей в описании материалов или найденных ошибках просим сообщать администраторам сайта, через форму обратной связи. Заранее спасибо